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Abstract

Sato theory provides a correspondence between solutions to the KP hierarchy and points in an
infinite dimensional Grassmannian. In this correspondence, flows generated infinitesimally by powers
of the “shift” operator give time dependence to the first coordinate of an arbitrarily selected point,
making it a tau-function. These tau-functions satisfy a number of integrable equations, including the
Hirota bilinear difference equation (HBDE). Here, we rederive the HBDE as a statement about linear
maps between Grassmannians. In addition to illustrating the fundamental nature of this equation in
the standard theory, we make use of this geometric interpretation of the HBDE to answer the question
of whatother infinitesimal generators could be used for similarly creating tau-functions. The answer
to this question involves a “rank one condition”, tying this investigation to the existing results on
integrable systems involving such conditions and providing an interpretation for their significance in
terms of the relationship between the HBDE and the geometry of Grassmannians.
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1. Introduction

It was the seminal work of Saf@9] which related the geometry of the Grassmannian
to the solution of soliton equations. That relationship is analogous to the relationship of the
functions sine and cosine and the geometry of the unit circle in the plane. These trigono-
metric functions, of course, arise as the dependence af-tla@d y-coordinates on the
time parameter of a uniform flow around the circle. In the case of Sato theory, it is the
tau-functions of the KP hierarchy which arise as the dependence of the “fitgtRé? co-
ordinate upon the time variables= (t1, 12, t3, . ..), where the flow corresponding to the
variabler; is generated infinitesimally by the operator which takes the basis elemeft
the underlying vector space ¢g,; [29,30,34]

The remainder of this introduction will briefly review this construction and motivate the
following question: Whabther choice of infinitesimal generator could have been made
that similarly generate KP tau-functions? In other words, we are looking for other flows,
in both finite and infinite dimensional Grassmannians, which have this property of creating
tau-functions through the projection onto the first coordinate.

Our approach to this question will be algebro-geometric in nature, rather than analytic.
In Section2, we will reinterpret the Hirota bilinear difference equation (HBDE), which
characterizes KP tau-functions, as a linear map between Grassmann cones with certain
geometric properties. It will be precisely the existence of such a map that characterizes the
alternate KP generators.

The main result appears in Secti®rwhere we identify those operatdfshat can serve
as generators of the KP flow in a Grassmannian. As it turns out, this property is characterized
only by a restriction on the rank of one block of the operator. This result is applied and
discussed in Sections and 5 with special emphasis on its relationship to the rank one
conditions that have appeared elsewhere in the literature on integrable systems.

1.1. The KP hierarchy

The KP hierarchy is usually considered as an infinite set of compatible dynamical systems
on the space of monic pseudo-differential operators of order on@lidion of the KP
hierarchy is any pseudo-differential operator of the form

L=3+wi®)d ™ +wa()d 2+, t=(1.1213...) (1)
satisfying the evolution equations

%E =L, (£)y], i=123,..., 2)

L

where the “+” subscript indicates projection onto the differential operators by simply elim-
inating all negative powers @ and [A, B = Ao B— Bo A.

Remarkably, there exists a convenient way to encode all information about the KP solu-
tion £ in a single functiorr(t) satisfying certain bilinear differential equations. Specifically,
each of the coefficients; of £ can be written as a certain rational functionc@f, o, . . .)
and its derivativeg30]. Alternatively, one can construa from t by letting W be the



284 M. Gekhtman, A. Kasman / Journal of Geometry and Physics 56 (2006) 282-309

pseudo-differential operator

1 1
W="¢ <t1— a1t — 82,...) ,
T 2

and thenl := W o 9o W1 is a solution to the KP hierarchi2]. Every solution to the
KP hierarchy can be written this way in terms of a tau-function, though the choice of tau-
function is not unique. For example, note that one may always muliipbyn the right by
any constant coefficient seriestlO(3~1) without affecting the corresponding solution.
If £ is a solution to the KP hierarchy, then the function

2 9 2 i I

u(x, y, 1) = — awl(x, Yt = 2 ogr

is a solution of the KP equation which is used to model ocean waves. Moreover, many
of the other equations that show up as particular reductions of the KP hierarchy have
also been previously studied as physically relevant wave equations. The KP hierarchy also
arises in theories of quantum gravii], the probability distributions of the eigenvalues of
random matricef3,32], and has applications to questions of classical differential geometry
[7].

Certainly one of the most significant observations regarding these equations, which is a
consequence of the for(R), is that all of these equations are completely integrable. Among
the many ways to solve the equations of the KP hierarchy are several with connections to
the algebraic geometry of “spectral curvg§$;13,22,25,24,31,30However, more relevant
to the subject of this note is the observation of M. Sato that the geometry iafiaie
dimensional Grassmannian underlies the solutions to the KP hierardRg].

1.2. Finite and infinite dimensional Grassmann cones

Let k andn be two positive integers with < n. For later convenience, we will choose a
non-standard notation for the basis@f, denoting it by

C" = (€k—n» €k—nt1, -, €—1, €0, €1, ..., €k—1).

Then, for instance, an arbitrary element of “wedge spaﬁdb@" can be written in the form

w = E ey,

Ier.n
wherer; € C are coefficientsly , denotes the set
Ik.n ={I =(ig,i1,...,i)—1)lk—n<ip<ii<iz<---<ip1 <k—1},

ande; = ejg Aejg A+ Aej_y.
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A linear operatod : C* — C” naturally extends to an operatbf : /\k — /\k, where
we consider the action to be applied to each term of the wedge product

Mey = M(ei) A M(ei,) A -+ A Mey,),

and extend it linearly across sums.
We denote byk" ¢ /\k C" the set of decomposabtewedges in the exterior algebra
of C"

" ={vi Ava A Ao € C).

This Grassmann cone is in fact an affine variety in thg)-dimensional vector spagﬁek ct
becausev is in I'%" if and only if the coefficientsr; satisfy a collection of quadratic
polynomial relations known as theRker relationq12]. Specifically, we consider the
coefficientst; to be skew-symmetric in the ordering of their subindices and select any two
setsl andJ of integers betweekh — n andn of cardinalityk — 1 andk + 1, respectively

k—n<ii<iz<- - <ip-1<n,
k—n<ji<jo<--+ << jry1 <n.

It follows thatw is decomposable if and only if

+1

/
Z(_l) Titigeonsitm 1t T Lo 20 s -1t Lo fiss = O 3)
=1

for all such selections of subsdtand..

In general, therefore, the Grassmann cdéiié is defined by a collection of quadratic
equations involving up té + 1 terms. In the special cage= 2 andn = 4, only a single
three-term relation is required. Specificallye /\2 C* is decomposable if and only if the
coefficients satisfy the equation

T_2,-1m0,1 — T—2,0m—11+ 721710 = 0. (4)

Later we will demonstrate a method through which the one reladdns sufficient to
characterize the general case (cf. Sectici.

It is natural to associate &dimensional subspac#, c C" to a non-zero element
we I'" If w =v1 A --- A vy, thenthey; are linearly independent and we associatetioe
subspacé¥,, which they span. In fact, sind&, = W, if ® ande’ are scalar multiples, it is
more common to consider the Grassmanuia(k, n) = PI'*" as a projective variety whose
points are in one-to-one correspondence Withimensional subspaces. This association of
points inPI"%" to k-dimensional subspaces is tAgicker embedding of the Grassmannian
in projective space. However, due to our interest in linear maps between these spaces — and
our desire to avoid having to deal with the complications of viewing them as rational maps
between the corresponding projective spaces — we choose to work with the cones instead.
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Next, we briefly introduce the infinite dimensional Grassmannian of Sato theory and the
notation which will be most useful in proving our main results. Additional information can
be found by consultin§l4,20,29,30]

We formally consider the infinite dimensional Hilbert spat@verC with basis{e;|i €
Z}. It has the decomposition

H=H_®H,, (5)

whereH_ is spanned bye;|i < 0} andH, has the basi;|i > 0}.

The wedge spac@ has the basis; = ¢;, A ej; A - -+, where the (now infinite) multi-
index I = (ip, i1, i2, . ..) is selected from the sdétwhose elements are characterized by
the properties; < i;.1 andi; = j for j sufficiently large. (In other wordsg, € I can be
constructed from the “ground stat&y = (0, 1, 2, 3, 4, .. .) by selecting a finite number of
its elements and replacing them with distinct, negative integers.) A general elemg&nt of
then is of the form

w = E wrej.

Iel

Since the multi-indices are of this form, it is notationally convenient to write only the
first m elements of an element dfe I if it is true thati; = j for all j > m. For instance,
we utilize the abbreviations

T 2 1=m_2-12345. and e pi1=e2AegnerNezNesn---,

andep1 = eg A e1 A e2 A e3 A ---. Moreover, using this same abbreviation we are able to
view the finite sefly , introduced earlier as being a subset of the infihite

Ign={I€el:-k<ip, ij=j for j>n-—-1}.

In this way, arbitrary finite dimensional Grassmann cones can be seen as being embedded in
the infinite dimensional one in the form of points with only finitely many non-zetakdr
coordinates. Consequently, although we may not always emphasize this fact, the results
we determine forA can all be stated in the finite dimensional case as well through this
correspondence.

The Sato Grassmann coeC /\ is precisely the set of those elements which can be
written as

W=VIAV2AUV3IA---, Vv €H

It can also be characterized byiEker relations since € I" if and only if for every choice

of k andn, the (Z) Plicker coordinates; for I € I, satisfy the relation§3) for rkn In

order that the operations we are to utilize be well defined, we make the assumption that if
w is represented in this form, the vectgrs} are chosen so that = e¢; + 372, ; ¢je; for

i chosen to be sufficiently large.
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As in the finite dimensional case, the GrassmanrGan= PI" has an interpretation
of being the set of subspaces Bfmeeting certain criteria. However, rather than being
identified by their dimension, one can say that they are the subspaces for which the kernel
and co-kernel of a certain projection map are finite dimensional and for which the index of
that map is zer¢29,30] Again, the subspace correspondinggon v1 Ava A--- € T IS
the subspace spanned by the bésis

Note. Those uncomfortable with the formal approach to this infinite dimensional object
may choose to assume further restrictions on these definitions as spec[B&d, where
an analytic approach is used to ensure that all objects are well defined and that all infinite
sums converge. Alternatively, one may consider the caserihatO for I ¢ I, in which
case this reduces to the finite dimensional situation in which there are no questions of
convergence.

1.3. The shift operator and tau-functions

The linear “shift” operato8 : H — H is defined by the property th8t; = ¢;41. (Writ-
ten as a matrix, it would have ones on the sub-diagonal and zeros everywhere else.) The
linear map

o0
E(t)=exp) tS':H— H, (6)
i=1

induces a mayE(t) on /\ for any fixed values of the parametdrs- (11, 72, .. .). We use
E(t) to introduce “time dependence” to each paine /A

o) = E)w =Y #i(t)e;. 7)
Iel

The main object of Sato’s theofg9] is the functionr,,(t) associated to any poiat e /\
and is defined as the firstirRlker coordinate of the time-dependent paeit) {cf. (7))

T (t) = Toa(t). (8)

There is very little that one can say abayft) in general. In fact, since it can also be
described as an infinite sum of Schur polynomials with the original coefficignt$é » as
coefficientd29,30] one can seleeb € A so thatr,(t) is any formal series in the variables
t;.

The main result of Sato theory is thaj(t) is a KP tau-function precisely whenme I
In fact, a functionz(t) is a tau-function of the KP Hierarchy if and onlyiift) = z,,(t) for
somew € I [29].

Note. By virtue of the fact that we have chosen to work with Grassmann cones rather
than projective Grassmannians, our correspondence between points and tau-functions nec-
essarily involves the constant functieg(t) = 0. The usual definition of “KP tau-function”
specifically excludes this function, but here we will adopt the convention of referring to this
function as a KP tau-function even though it does not correspond in the usual way to a Lax
operatorL.
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1.4. Alternative KP generators

The main question which we seek to address in this paper is the followWingywhat
operator could you replace S in (6) so that t,, (8) would still be a tau-function for any
wel?

There is a sense in which this question seems uninteresting. After all, since Sato theory
characterizes the totality of solutions of the KP hierarchy using only the shift op&ator
may not be clear why one would be interested in other choices. We therefore motivate the
question with the following list:

e [t is only by answering the question posed that we can recognize which of the many
properties that characterize the oper&are responsible for its role in generating KP
tau-functions. For instance, it has the properties that it is a strictly lower triangular
operator with respect to the bagés}. Additionally, it has the property that fare H_,

Sv e H_ @ Cep. It is not at first clear which, if any, of these properties is related to its
role in generating KP flows.

e Although all solutions of the KP hierarchy can be generated using the op&ator
and some point € I' through Sato’s construction, it is possible that solutions which
are difficult to write or compute explicitly in that format can be derived in a sim-
pler way using an alternative choice of generator for the flows. For instance, the
simplest points inI" are those having only finitely many non-zerdiéder coordi-
nates. (Equivalently, one may consider the case in which a finite dimensional Grass-
mannian is used in place of the infinite dimensional Sato Grassmannian.) Using
powers of the shift operatd8 to generate the KP flows, these correspond to tau-
functions which are polynomials, depending only on a finite number of the variables
{#;} [30]. However, as we will show, using an alternative generator one gets a wider
variety of interesting KP tau-functions using flows @nite dimensional Grassma-
nnians.

e Finally, the answer to the question posed might provide an understanding of other phe-
nomena in integrable systems which were not previously considered in the context of
choice of KP generator in the Grassmannian at all. In particular, we suggestively point
out that “rank one conditions” (the requirement that a certain matrix have rank of at most
one) have arisen in the study of both finite and infinite dimensional integrable systems
in a number of apparently unrelated contexts. We will argue that these are related and
actually represent an unrecognized instance of the sort of alternative KP generator we
investigate here.

2. The geometry of the Hirota bilinear difference equation

Although differential equations satisfied by KP tau-functions have certainly attracted
the most attention, tau-functions are also known to satigfygrence equations. For in-
stance, a tau-functiom(t) necessarily satisfies thiirota bilinear difference equation
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[20,29]

0= (A2 — A1)(Aa — A3)T(t + {A1} + {A2})T(t + {13} + {Aa})
—(A3 — A1)(Aa — A2)T(t + {A1} + {A3))T(t + {A2} + {A4))
+(ha — A1)(Az — A2)T(t + {A1)} + {Aa})T(t + {A2} + {13}). 9

where the “Miwa shift” of the time variables= (t1, 1>, .. .) is defined a%

)LZ )\3 (_A)l
t+{AM=(nt+trn—- -3+, ti———, ... .
2 3 i

Similarly, it is known to satisfy other quadratic difference equations that are more than three
terms long. These difference equations are known collectively as the additive fof@®jlas

or the higher Fay identitielR]. Moreover, any solution t®) is necessarily a tau-function

of the KP hierarchy20,34] Since it is the case that#(t) satisfieq9), it must also satisfy

all of the longer difference equations as welle will focus our attention primarily on this
equation.

Inthe literature, the fact that these equations are satisfied by KP tau-functions is generally
proved as a consequence of higher level results of soliton theory. For instance, it can be
derived from an application of Wick’s theorem to the representation of tau-functions in
terms of the algebra of fermion operat¢28] or through an asymptotic expansion of an
integral equation known to be satisfied by tau-functigd#536]

However, a recent trend in the theory of integrable systems is to reconsider difference
equations themselves as being fundamental. In fact, there as been renewed interest in the
HBDE (9) for its relationship to quantum field theories and in relating quantum to classical
integrable systemfl9,36] In keeping with this trend, we find it useful to describe the
HBDE not as a consequence of the analytic theory of the KP hierarchy, but as a natural
consequence of the algebraic geometry of the Grassmannian itself.

2.1. Grassmann cone preserving maps

If L is a linear map from\\* C" to A\¥' C* (k' < k andn’ < n), it is natural to ask
whether it preserves the Grassmann cones. We will call such a lineal. m&passmann
cone preserving map (or GCP map) if it has the property

Lrkmy c ko,

1 This definition of the Miwa shift is used here for the sake of convenience and is related to the more common
one byt + {x} =t —[—x].

2 In keeping with the philosophy of this paper that the HBDE and its fundamental nature can best be understood
without reference to more sophisticated results of soliton theory, we wish to point out that the recent paper by
Duzhin[8] can be used to prove that the three-term relai@®mplies all of the longer difference equations in an
elementary and entirely algebraic way.
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As it turns out, it is easy to characterize the linear mapshich preserve the Grass-
mann cones in this way. The GCP maps are precisely the ones which have a natu-
ral geometric interpretation in terms of thelPker embedding, as we will explain in
greater detail below. Our description differs from standard treatments of this question
(e.g. [10]) mainly in that we have chosen to work with the Grassmann cones rather
than projective Grassmannians to allow us to work with linear rather than rational
maps.

First we note that a non-singular linear map: C* — C" will naturally induce
a linear GCP mapi/ : /\" Cc" — /\" C". The map M clearly preserves the Grass-
mann conel’®" since the image of the decomposable element --- A v is sim-
ply Mvi A --- A Mug. In fact, it provides an isomorphism of the Grassmann cones.
(This equivalently can be interpreted as the selection of an alternative choice of coordi-
nates for the same Grassmannian in terms of a different basis of the underlying vector
space.)

Another, similar type of linear map on the wedge space that preserves the Grassmann
cones is that induced by a projection map. Rt C" — C"' be a projection map (i.e.

P2(v) = P(v)) and note that the map : AKC" — A C" defined by

P(e,-l /\e‘i2 /\-~-/\eik) = Peil AN Pe,-z VANEIRIVAN Pe,'k.

Again, itis obvious that this map is GCP by virtue of its component-wise action. Not& that
takes the form of a projection map ¢‘d( C" whose kernel is spanned by all decomposable
elements having at least one component in the kerng| of

Adifferent sort of linear map preserving the Grassmann cones can be constructed through
intersection. Suppose we have a decompositidtitasU & V, whereU is ap-dimensional
subspace with basig1, . .., u,,}. We consider a linear majp : A\ C* — A7 v whose
action on decomposable elements of the farm vi Ava A~ Avg_p Augr Aug A -+ A
upis

U(w) =01 A02A - A Vp—p,

(where the bar indicates projection ontpand wherdJ(w) = 0 otherwise. Geometrically,
this corresponds to intersecting theimensional subspadgwith Vand soitis clear again
thatU is a GCP map. (In the case that the subspéamrresponding te € I'*" is such
thatWw N V is not ( — p)-dimensionalw is in the kernel of the map'.)

Finally, the “dual isomorphism” of Grassmannians in which a subspacereplaced
by its orthogonal complement also takes the form of a linear mém:" — /\""‘ ct
preserving the Grassmann cones. One way to explicitly describe the action of this map on
the pointw = v1 A --- A v € T®" is to construct then(+ k) x k matrix

(Ilvalvz| - - [ve).
Lettingm;,,...;, , (1 <i1<i2 <--- <ip— < n) be the determinant of the sub-matrix of

columnsiy, iz, ..., iy—r,n+ 1, n+2,...,n+ k gives the Rlicker coordinates of the cor-
responding point in the dual Grassmann céie*".
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The important point is that any linear mapwhich preserves the Grassmann cones is
necessarily made up of some combination of the four types of GCP maps described above.
Consequently, if one wishes to show that a certain linear mapGCP, it makes sense to
seek a geometric interpretation bfas described. Moreover, if one has a linear map that
is known to be GCP, one could seek a geometric understanding of its action by finding
the projection map, change of coordinate maMfixand intersecting subspadesuch that
L takes the form of the composition of the corresponding GCP maps. It is precisely this
philosophy which we apply in attempting to analyze the geometry of the Hirota bilinear
difference equation.

2.2. Why tau-functions satisfy HBDE

Suppose that(t) is a tau-function of the KP hierarchy. Then, there exists some point
w € I' such that(t) = 7, (t) through Sato’s construction. If we define

mij = (A j43 — Aig3)T(t + {Aiy3} + {Aj43)) for —2<i<j<1 (10)

then the HBDH9) becomes the Btker relation fodr"24 (4). Thus, assuming thatsatisfies

the HBDE, (10) defines a GCP map fromy to /\2 C*. By the remarks of the Sectidh1,

the map(10) ought to have some natural geometric interpretation in terms of the subspaces
corresponding to the points in the Grassmannians.

We present that geometric interpretation here in an explicit form as an alternative way
to derive the difference equations satisfied by KP tau-functions and to motivate the more
general construction to be presented in the following section. Note that we present this
material without proof, although it can always be reconstructed as a special Gdmsoém
3.5which is proved further. In addition, we note that a similar proof appears in a different
context in the papdR3].

Letw = > mrer € A andz,(t) be the tau-functiof8) associated to it by the usual Sato
construction. Our method of demonstrating thgft) satisfies difference equations such
as(9) whenw € I will depend on interpreting the “Miwa shiftst,, (t) — 7,(t + {1}) as
linear maps or\. Its form is simplified when one recognizes the Taylor expansion of a
logarithm in the expression so as to writg(t + {x}) as the coefficient ofg 1 in

o(t + {x}) = exp <Z (t,- —

By the same reasoning,,({x1} + - - - + {x«}) is the coefficient o&g 1 in

(—ix)i> Si) w = (I + xS)a(t).

@=+x18) - (I +xS)w.
Now, we will explicitly determine a formula for this coefficient as a linear expression in the
coordinatesr; of w.
Let

T(x1,...,xx) = I+ x1S)( + x28) - - - (I + x¢S)
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be the operator o/ depending on the complex parameterand consider its extension
T = f‘(xl, ..o, xg) onA.

For an arbitrarys = >,y 7e; € A\, we define the new poink € /\ and the new co-
efficients; by the formula

0= f‘a) = Zf[[@[.
Iel

By virtue of linearity there exists a functiofi: I — C such that

fo1 =Y i f(]).

Iel

As it turns out, it is more natural to descrilyl) in terms of the numbers which do
the multi-index inl made up of all integers greater thatt — 1 other than thel’c“épecified
integersji throughji

I=Jj  j=1-k-k+1---,012 - -N\{j1,..., jx}-

If 1 =1J;, . ; (for some integerg, satisfying—k < j1 < j2 <--- < ji), thenf(I) is the
Schur function

+k
dettc’)E 5oy

= —1
deteh K 5y

If I does not take this form, thef(I) = O.
We wish now to construct a GCP map

P A= Ao

depending on the parameters: (¢4, 2, ...) and .1, . . ., A,) such that théZ) coefficients
of L(w) are written in terms of the functions,(t + {1;,} + - - - + {%;}). The Plicker re-
lations (3) for "% will then take the form of difference equations for which will be
satisfied whemw € I' is an element of the Sato Grassmannian.

The “time variables” enter in the usual manner, by the exponentiated action of powers
of S (cf. (6)). Note thatE(t) is already a GCP map fromf to itself (for each fixed value of
the parameters that is).

Similarly, let P, : H — H be the projection map defined by

P()— e; if i> —k,
TO=NY0 i i<—k

f() (11)

that projects onto the subspace spanned by the elemenith i > —k.
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The dual isomorphisnD on /" has the effect of replacing the infinite wedge product
e with the finite wedge produey whereJ = Jj, ;. andl = (ja, ja, ..., jk). We follow
this by the extension to the wedge spa¢ef the change of basis using an infinite matrix
M whoseith row is of the form

@ a2 A3 ),

if i < n andis equal to théh row of the identity matrix otherwiseand finally the extension
of the projection map

Pafer) e, if i<n+k,
2V=30 if imn+k,

Now, for each fixed value of the parametésswe get a GCP map. defined as the
composition of these GCP maps

L=hoftonobiok: \ > N\

The key pointis that the maphas been constructed so that(@ePlUcker coordinates of
L(w) can be written simply as Miwa shifts of,. Specifically, one can verify by comparison

with (11)that its coordinates are precisely
Tjr—kowimk = Ajps Mgy oo X )T (t + (g} + -+ (i), (12)

,,,,,

forl<ji<j2<-- < jx <n,where

i—1
Alx1, ..., xp) = det(x{ TJZJ-

denotes the usual Vandermonde determinant.

It is then a consequence of the GCP property. ahat KP tau-functions satisfy differ-
ence equations. In particular,df € I', the Plicker coordinates of (w) satisfy the set of
Pliicker relationg3) for I'*". Making the substitutio(i12), these algebraic equations in the
parameters; take the form of difference equations foy. For instance, in the cage= 2
andn = 4, the Piicker coordinategl 2) satisfy(4), which is nothing other than the HBDE

9).

3 It is often common to associate a function to an elemeit b the rulee; = z' (cf. [30]). If one does, then
multiplication by the infinite Vandermonde matd% does nothing other than multiplying the functions#5yand
evaluating the results at (cf. [23]). This does simplify the present exposition somewhat, but would not suit the
generalization we wish to consider later in whifs replaced by an arbitrary operator.
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3. KP generators
3.1. Preliminaries

Letw € A andletS : H — H be an unspecified linear operafdefinez3(t) again by

M) =Fo12..(1), @) =EMw=>Y #i(t)e, E®)=expy iS5, (13)
Iel i=1

and callS aKP generator if it has the property that} (t) is a tau-function whenever € I".
Our goal is to determine what operatétrs H — H are KP generators. Of course, we know
thatS = S is one such generator. In additioh= O provides a trivial example for which
3(t) is constant. However, as we will see, there is a larger class of generators which produce
non-trivial KP tau-functions than just= S.

We will proceed by attempting to construct a linear GCP map such that troke?!
coordinates of the image are appropriate Miwa-shifted copieg.ofvhether such a map
exists depends upon the block decomposition

o (S _ (55
St St— St

with respect to the splittingp).
Note that it follows from an elementary calculation that there is no harm in conjugating
S by a block upper triangular matrix.

Lemma 3.1. Let G : H — H be an invertible operator with block decomposition

A B
G = ,
ocC
with respect to the splitting (5), and where C is almost lower unipotent. Then, forany w € \,

the functions t5(t) and rj (t) differ by the constant multiple detC, where S’ = GSG~* and
o' = Gw. Consequently, S is a KP generator if and only if S’ is a KP generator.

We make use of this lemma to assume, without loss of generality, that the Hiafris
lower triangular in the remainder of the paper.

4 In order to ensure that the operations we utilize will be well defined, we assume that the operdimunded
and is “almost lower triangular”, i.e. that it can be written in the block form

A0
S = ,
CcD

with D strictly lower triangular with respect tome splitting of the underlying spadé.
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3.2. A rank one condition

We will show thatS being a KP generator is equivalent to the following restriction on
the rank of the blocls,_ : H- — Hy

rank@;-) < 1. (15)

It is notable that there is a long precedent of such “rank one conditions” in the literature of
integrable systems (cf1,5,6,9,11,16,17,26—28,33,3p]

Lemma 3.2. IfS satisfies the rank one condition (15), then the linear map Lin:\— /\k’”
defined by giving the coordinates of Ly ,(w) the values
iy koomir—k = Alhiy, - A )To(E+ i} + -+ A ) (16)

.....

(forl <i1 <ip < --- < ix <n)isaGrassmann cone preserving (GCP) map.

Proof. Due to linearity it is sufficient to assume thatis an elementary wedge prod-
uct. So, we suppose = v; Av2 A ---, and throughout the remainder of the proof
we will consider w to be an infinite matrix whoseéth column is the representa-
tion of v; in the basis{e;}. In addition, we note at this point that it is sufficient to
prove the claim fort = (0,0,0,...) but arbitraryw since t3(t) = rﬁ,(o, 0,...)if o

= a(t).

We will show that there exist operatotsandM on the underlying vector space such that
the mapik,,1 can be decomposed into the composition of the change of basis and projection
A followed successively by the dual isomorphism, the change of Wdsiand the map
induced by the orthogonal projection onto the subspace spandedby. ., e,—x—1}. The
GCP nature ofk,,, is then clear by virtue of the fact that each of these component maps is
GCP.

Denote

k
P(x) = (14 x1x) -+ - (L + x,x) = Z oix,
i=0

where

Ui(xl,...,Xk) = Z Xaq *** Xg;

15a1<---<(xi§k

is theith elementary symmetric function of, . . ., xi.
Then,z3({x1} + - - - + {xx}) is the “first” Plicker coordinate oP(S)w and hence

S((xa) + - - + {x)) = det(P(S);w).
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But, sinceS,_ has rank one, there exist vectarandy such thats, _ = uv'. Then,

k k i—1
P(S)y = 0i(S) 4 = (0 P(St))+ D _0i » (S4) T tuvT(8/)-
i=0 i=0  j=0
k-1 k
=0 PS4+ Y (0 (S0 )T (s7)-)
Jj=0i=j+1
k=1 k
= P(St )0 1+ DD erl + x:S4) Mu(' (7)),
j=0r=1

wherec,; are the coefficients in a partial fractions decomposition

Zf:jﬂ oix' I~ _ zk: Crj
P(x) N :ll—i—x,x'

More explicitly,

Xk Zéi:o Ou(—x,) %

’ Hs;ér(xr - xs)

er =

Note also, that if we denote by the oth elementary symmetric function in
X1y vy Xpe1, Xptd, - - - » Xk, thEN

J J
S ul—x ) = 304 + w0y~ = o,
a=0

a=0
Thus,
Crj = X, 07;.
Hs;gr(xr - xs)
Next, denote by a matrix with columns+ x,S4.) u,r =1, ..., k, by V a matrix

with rowsvT($¥7/)_, j = 1, ...k, and byC the matrix ¢,—,)% ;_;. Observe that

C =diag @, ..., X)Van@y, ..., x) 7L,
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where Vangs, ..., xx) = (x;‘l)’;jzl is the Vandermonde matrix of{, ..., xz). In partic-
ular,
k k
detC = M
Axq, ...y XE)
where, againA(xy, ..., x¢) = detVangy, ..., xx).

We see now that

P(S)+ = P(S++4)([0 1] + UCV)
and

‘L'S({Xl} + -+ {)Ck}) = det(P(S)+a)) = detP(S++) det@+ + UCV(U),

" w— .
where we used a natural decompositioe- ( ) Using the Schur complement formula
W+

for determinants of X 2 block matrices with square diagonal blocks

Z11 Z12 1
det = detZy1 det(Zy2 — 721741 Z12),
Z2 Z22
we obtain
. —C 1 Vo
det, + UCVw) = (—1)* detC det .
w4

Noting that detP(S++) = det(l + x154++) - - - det + xxS++), we finally conclude that

Sxa) + -+ ) = det(f (x1)! - - - | f (xx) [(Aw)), 17)

Alxa, ..., Xk)
where f(x) is a column vector of the form

F(x) = col(po(x), —xpo(x), ..., (=x)Lpo(x), (=x)* p1(x), (=x) p2(x), .. ),
with

po(x) = det(l + xS41), (pi(x))i=1 = po(x)(I + xS44) " u

VoV
A= .

where we re-wrot& = (V_ V).

and
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We can construct a corresponding GCP rﬁ@g as follows. The matrid above can be
viewed as a combination of a projection and a change of coordinates, and so its extension
to the wedge space takes the form of a GCP map. Moreover, if we define the infinite matrix
M to be the matrix whosieh row is f(1;)" fori < n and is theth row of the identity matrix
otherwise, ther is a GCP map which represents the change in coordinates corresponding
to an alternative choice of underlying basis.

The claim then follows from recognizind 7) as the statement that

A()‘-ila s )"i_,')t({)‘-il} +--+ {)"lk})
is the minor of the matrix f(A1) - - - f(A,)Aw] in which all rows and all columns from
columnn + 1 onwards are chosen, but only colunips . ., i; from the firstz are selected
and noting that this and consequently can be interpreted as the composition of the dual

isomorphism with the map/. O

By the GCP nature of the map, we can use thelr relations to determine equations
satisfied byrS whenw € TI.

Corollary 3.3. Define ‘L'g by (13). Then, if € I" and S _ is an operator of rank one, ras)
satisfies a collection of difference equations obtained by substituting (16) into (3).

Conversely, we conclude that no such map exists in the kas@ andn = 4, if the
operatorS does not have the rank one property.

Lemma 3.4. It the operator S does not satisfy the rank one condition (15), then the linear
map Loga: \ — /\2’4 defined by the property that L(w) has coordinates

ﬁi1—3,i2—3 = ()‘iz - )\il)fg(t + {)‘il} + {)"lz})
(for 1 < i1 < ip < 4)is not a GCP map.

Proof. It suffices to show that there exists a paint /" and values for the parameters
AL, ..., rgsuchthatlp 4(w) ¢ I'>* att = 0. We will show, in particular, that i does not
satisfy the rank one condition, then it is possible to findvan I" such that

Los(w)=m_p_1e_>_1+mo1e01, 7-2-17#0, mo1#0.

For notational convenience, we will denotef#fithe unspecified lower triangular entries
of various matrices. Thus, sindg . is lower triangular we can state that

Syt = Z siEii + LT,
1<ikoo
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and sinceS, _ is not of rank one, it has to have the form

ir—1
Sy_ = e, + E cie; UI + eizvg + Z eiU;r,
i=i1+1 i>ip

where 1< i1 < i, and vectore1 andv; are linearly independent.
Choose vectors); andws such thatv}wj =d; #0(j =1,2) andv]w, = 0. Then,

St (waef, + wae},) = d1Eiyi; + daEiyiy + LT.
, w— .
Foru € C, definew = w(u) = ( J ),wnh

w_ = u(wleiTl + w2€z£)~
Then,
2
(S + Do)y = Y Osi+ DEi+ Y (Asi; + pdj) + 1Eiji;, + LT.
i#i1,i j=1

Clearly, T3({1}) = det((.S + Iw);+ is not identically zero, but>({1;}) =0 for A; =
rj(p) = m (j = 1, 2), where the constants should be selected in such a way that
j

two linear functions ofs, s;; + d; are not identically equal.
Observing that

. d1 do
/Llﬁ;noo(()LlS + 1)()‘*2S + I)C())+ = i;;liz Eii - zinlil - leizig + LT,

we conclude that
lim 5, ((Aa(w)} + ra(u))) = L.
H—>00 H

Then, there existg such thatfow = w(u), A1 = A1(u), A2 = A2(u), A4 = 0 and almost
everyas

AN =0 (=12, w(r))#0 and t5({r}+{r2)) #0. O

Combining the two lemmas above, and using the equivalence of the difference equations
of Corollary 3.3to the KP hierarchy20,29] we conclude the following.
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Theorem 3.5. The function t5(t) (13) is a tau-function of the KP hierarchy for all € T’
if and only if S has a decomposition (5) such that Sy _ satisfies the rank one condition (15).

3.3. Characterizing Grassmannians using KP

The functionsgl (t)for I € I play animportantrole. By linearity, we see that for arbitrary
o € )\, the functionz3(t) can be expanded as a sum

IHOEPEAMON (18)

Iel

wherern; are the Rlicker coordinates @ (w = > mye;). Then, by virtue of the main result
of the previous section, we can say thaf gatisfieg15), then the linear combinatiafi8)
is a tau-function if the coefficients; are the Rlicker coordinates of a poitit.

Inthe caseS = S, this is the well-known decomposition of the tau-function into a sum of
Schur polynomial$29,30] However, in that case there is something stronger one can say.
In the standard construction one also has that the linear combir{a8pis a tau-function
only if the coefficients are chosen to be the coordinates of a poift im this way, the
standard Sato construction provides a way to determine whether aqgivel” 7rse; lies
in the Grassmann cone via the KP hierarchy. This is not the case for &&mfgcted to
satisfy(15). In order to be able to say thaj(t) is a tau-functiorvnly if o lies in a (finite)
Grassmann cone additional restrictions will have to be placed on the selecfion of

We say that the KP generatdr. H — H satisfying(15)is (k, n)-faithful if the function

Z Ty (t)

[E]Ik,n

is not a tau-function of the KP hierarchy when

w = E wiey

IGHk,,,

lies outside of the Grassmann cofié” c A. Similarly, we will say thats is faithful if
the function(18)is a tau-function of the KP hierarchy only far that are coordinates of a
point in I". Note that ifS is (k, n)-faithful, then it is necessarily(, n')-faithful for ¥’ < k
andn’ < n and that it is k, n)-faithful for any choice ok < n if it is faithful.

Lemma 3.6. Let S : H — H satisfying (15)and let K C ) be the subspace
K= a)e/\:a): Z Trey, I:k,,,(a))EO ,
IEI[k,,,

where Zk,n is the linear map defined in Lemma 3.2 Then, S is (k, n)-faithful if and only if
K = {0}. Consequently, S is faithful if T5(t) = 0 only for = 0 € A.
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Proof. Suppose’ € K has the property theﬁk,n(w’) = 0 for all values of the parameters.
This means thaztj+w,(t) is a tau-function wheneveg (t) is a tau-function. The only point
in o' = I'*" which has the property that + I'*" = I'*" isw’ = 0, and s0 ifS is (k, n)-

faithful, thenK = {0}. On the other hand, K = {0}, thenik,,, gives an isomorphism of
r&m c rwith r"=%" such that the difference equations satisfiea}) are precisely the
Plucker relations. That these conditions are satisfied féralk is equivalent to confirming

thatz3(t) is never the zero functionib # 0. O

Clearly, one requirement for faithfulness which is not impose(lByis that the powers
of S followed by projection ontd{,. cannot all be trivial for any element &f_; otherwise
that element would be “invisible” to the procedure for producing tau-functions.

Theorem 3.7. If S is (k, n)-faithful, then for v € (ex—p, ..., e_1) there is some m (1 <
m < k) such that S™v ¢ H_. If S is faithful, then for v € H_ there is some m such that
S"v ¢ H_.

Proof. If no power ofS applied tov € H_ results in a positive projection onfd, , then for
w=vAe1Ae2A - the coefficient ogg 1 in ST will always be zero and theagf(t) =0,
which implies thatS is not faithful.

More specifically, the conditions given fok,{)-faithfulness correspond to the non-
singularity of the matrixA which appears in the proof dfemma 3.2 If these conditions
are not met, then the GCP induced Awill have a non-trivial kernel, preventing from
being faithful according to the previous lemmal]

4. Applications
4.1. Symmetries

There are several obvious group actions on the set of opeasatssfying the rank one
condition(15). These translate into symmetries of the KP hierarchy through the function
s
7, (t).
For instance, consider the fact that the set of solutiond 59 is closed under scalar
multiplication. If we define the scalar multiple of= (71, r2, .. .) by

At = (A1, A2, 2313, .. ),

then the “scale invariance” of the KP hierarchy is represented by the faat(iltats a KP
tau-function whenevet(t) is one (for 0# A € C). This can be easily verified by noting
that

5(t) = ().
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Also for A € C, we see thaf + A1 satisfies the rank one condition wheneseoes. The
result is a translation of the time parameters similar to the “Miwa shift” described earlier

ST () = (8, 1, 15, .. ),

with

5=3 ()

i=0

Other symmetries are manifested as a change in the choiweaiher than as a function
of the parameters If G : H — H is an operator satisfying the conditionslefmma 3.1
thenS’ = GSG ! satisfies the rank one condition whenegetoes and

75 (t) = det(C)zd,_(t).
4.2. Finite Grassmannians and rank one conditions

Letw € I be chosen so that the only non-zerdder coordinates are those with multi-
indices il , (So we can considesas being an element 6%"). If §is chosen to have the an
appropriate block lower triangular structuéhen this property is conserved and the flows
generated by powers ¢fare all contained in the finite dimensional Grassmani&fi.

In the standard construction with = S, this necessarily produces tau-functions which
are polynomials in the variables, ..., t, sinceS is nilpotent onC" = (ex_,, ..., ex).
However, ifwe are willing to consider more genefahen other solutions can be constructed
from flows on finite dimensional Grassmannians as well.

One special class of solutions of the KP hierarchy are those coming from the Grassman-
nian Gr'@ [35], i.e. those whose algebro-geometric spectral data are a line bundle over a
(singular)rational spectral curve. This class of solution includes the rational solutions and
the soliton solutions as well as other solutions which can be written using exponential and

5 Consider the decomposition Afinto
H = H< ® HD @ H>7

whereH_ is spanned by the basis elemestfor i < k — n, Hp is spanned by; withk —n <i <k — 1andH-
is spanned by; with i > k and the corresponding decompositiorsafito
S<< S<O S<>
S=1 So< Soo So- | - (19)
S>< S>O S>>
Then, the property of having only zeraleker coordinates faf & I, is preserved by the flows generatedsss

longasS.o = S.~ = Spo~ = 0. Ifonly S... is also equal to zero, then it is sufficient to consider simply ann
matrix S generating flows on the finite Grassmanniaf’.
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rational functions. As we will see, these are the only solutions which can be obtained in the
case of a finite dimensional Grassmannian regardless of the choice of KP geferator
Letz(t) be such atau-function and associate to it the “stationary wave funetion’) =
(¥ — [z71)e¥ (X = (x, 0,0, ...)). The solutions inGr"@ can be identified by two pieces
of data: a polynomiap(z) of degreen such thatp(z)v¥(x, z) is non-singular ir; and an-
dimensional space of finitely supported distributionsthat annihilatey(z) ¥ (x, z). The tau-
function can then be written conveniently in a Wronskian form utilizing these distributions
[30] and viewed as coming from a flow on a finite dimensional “dual” Grassmaifbidn
It is not difficult to see (cf. Theorem 2 i®]) that in the case of a KP generator having
the block decomposition specified in the footnote and wikhxan matrix C representing
w € I'k" the stationary wave functiofi(x, z) takes the form

_ det([01]e*50(z] — Spo)C) .
1:[f()C, Z) = p(Z) det([OI] estOC)

We then see that this is a solutiondh@ for which p(z) = z" + O(z" 1) is a polynomial
depending on the blocK. .. (it is justz” in the caseS.. = 0) and the distributions have
supportatthe eigenvalues of the finite bldgk (with degrees bounded by the multiplicities).

It is not a coincidence that both rational solutions and soliton solutions have been fre-
qguently described in terms of “rank one conditions” on finite matrices in the literature of
integrable systen($,9,16,17,26,27,35These rank one conditions are merely special cases
of the more general constraifit5) as seen in the following examples.

Let X, YandZ ben x n matrices and consider the case in whichas the block form

 _ Z 0
" \xz-vxv )’

Then,ifo = v1 A - A v, € ™2 ischosensothat is theith row of the matrix ( 7 + X)
one finds that

() = det(exp (i tl-Zi> X + exp (i t,-Yi>> )

i=1 i=1

It is known that this formula gives a tau-function of the KP hierarchy precisely when the
matrix XZ — YX has rank ongl7], but as this happens to be the lower-left block of the
matrix S we can now also see this as a consequenddebrem 3.5

The matrices, Y andZ can be selected so as to mak§t) the tau-function of am-
soliton solution to the KP hierarchyy choosing 4 complex parameters;, A;, o; andy;

6 It has already been noted in other contexts thsoliton solutions “live” in finite dimensional Grassmannians
[15,18]
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(1 <i < n,such thap; # 1) and letting

o

X = ,
MBI — i)

Y j = widij, Zi,j = Xidij.-

Similarly, if X andZ aren x n matrices which satisfy the “almost-canonically conjugate”
equation

rankXZ — XZ+1) =1,

then it is known that

(t) = det <X + i itiZi1>

i=1

is a tau-function whose roots obey the dynamics of the Calogero—Moser Hamil{8B]an
This too can be seen as a special case of the selection of an appropriate KP generator
satisfying the rank one conditiqi5), where

¢ zZ 0
T \xz-zx+127)’

andw € I"™2" is chosen as in the last example.

There is interest in other special subclasses of solutions eff, such as positon,
negaton and complexiton solutions. Without going into details, we note that these kinds
of solutions can be obtained by selecting a finite dimensional KP genefatath an
appropriate spectral structure. In particubacan be areaV x N upper Hessenberg (upper
triangular plus lower shift) matrix with a prescribed characteristic polynomial. Then, for
anyk, S satisfies then rank one condition with respect to the splitiifig= (e1, ..., ex) @

(ek+1, - - -, en). For example, if is chosen to have complex eigenvalues, then for any real
win &N 75 is a real KP tau-function of a complexiton type.

4.3. Discrete KP (dKP) hierarchy

This hierarchy of differential-difference equations is described by @gsand (2)with
a replaced with the difference operan(Df)(k) = f(k + 1) — f(k)) andw;(t) replaced
with multiplication operators ((;(t) f)(k) = w;(k; t) f(k)) acting on functions of a discrete
variablek € Z (see, e.g[11]). Similarly to the continuous case, the solution has a form
L :=W o do WL with W constructed from a dKP tau-functiaik; t)

1 1
W="1 (ll— DLt — DZ,...) )
T 2
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It was shown irf11], that if z(t) is a tau-function for the continuous KP hierarchy, then

> 3) = 7(t + k{1})

k k
t(k;t)=t<t1+k,t2—,t3+

is a dKP tau-function. The,heorem 3.5mplies the following.

Corollary 4.1. If S has a decomposition (5) such that Sy _ satisfies the rank one condition
(15), then for any w € I’

w5 (k; t) = det((( + ) a(1)+)
is a tau-function of the dKP hierarchy.

Taking a limit asxy, ..., xx — 1 in (17), one obtains a Wronskian representation for
S(p-
T, (k; t)

w3k t) = det(F(L)| £/ (D) - - | FROQ)(AEt)w)).

4.4. Singularities

The Lax operato£ has a singularity wherever the corresponding tau-function has a zero.
This clearly happens at= 0 if and only if the corresponding point in the Grassmannian is
outside of the “big cell'T30]. Moreover, the degree of this singularity has been related to
more specific information about the location of the corresponding pointin the Grassmannian
for the standard construction with= S [2]. A similar result is a hecessary consequence
of the rank one conditiofiL5) for more general choices 6fas well.

Consider the subset df' of elements that can be written as a wedge product with
sufficiently many components if_

INi={wellw=viAvaA---, v,€e H. for 1<i<k}.
If w € I fork > 0, then3 (0) = 0 regardless of whethérsatisfies the rank one condition
(15). In general, whether the result of a single Miwa shif0 + {1}), is non-zero depends
on the choice of regardless of. However, as the following result showssSifs selected to
satisfy the rank one conditidii5), then at least Miwa shifts are required to get a non-zero
value for the tau-function ik is in I';.

Theorem4.2. Forw € I'y and S satisfying (15), the corresponding KP tau-function satisfies

k—1
0=15 (Z{AJ)
i=1

for any values of »; (L <i <k —1).
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Proof. The expression on the right is equal to the coefficien¢of in Tw, whereT =
T1(I + A;S). By assumptionp = v1 A vz A - - -, Wherev; € H_ for i < k. However, since
(SH-) is only one dimensional, all of the term&),. fori < k liein ak — 1 dimensional
subspace and hence their wedge product is equal to zérb.

4.5. A three-term alternative to the Pliicker relations

Although it is certainly well known that the KP hierarchy allows one to characterize
points in a Grassmannian, the approach of the present paper provides a way to achieve
this in the language of GCP maps. Further, we will demonstrate such an approach us-
ing the standard generatSr(although any X, n)-faithful S would do), resulting in a sin-
gle, parameter dependent, three-teriiccRér relation that characterizes an arbitrary finite
Grassmanniaf.

Consider an arbitrary point € /\" C" and the question of whetherlies in the Grass-
mann cone %", Let G be then x n, lower-triangular Toeplitz matrix with the parameter
1's along the diagonal ang (1 < i < n — 1) on theith sub-diagonal

1 0 0 0O ---0
a; 1 0 0O ---0
G = ar o1 1 0o ---0

Qp—10p—2 Qp—3 04 -+ 1

Denote byP the projection

P()— e; i> -2,
“W=Y0 i<-2

Also, defineM to be then x n matrix whose inverse has the block decomposition

= 1 V10
a Ay, ..., )\ VoI |’

1 -1 1 -1
—A1 A2 —A3 A4
2 2 2 2
Al —A5 A3 —A%
3 3 3 43
—A1 Ay —A3 Ay

with

Vi =

3

7 T. Shiota has shown us in personal correspondence a possibly related procedure for characterizing an arbitrary
Grassmannian using a finite number of parameter-free three-téickePIrelations.
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4 4 4 4
be —33 A4 4

5 5 5 5

-3 23 —33 23
Vo

(—)vl)k+1 —(—kz)k""l (_)\S)k+1 —(—)»4)k+1

The action of the operator made by composing these maps
L=MoPoG:C"— CH?

can be extended to a mdpfrom /\k C" —» /\k Ck+2 py letting it act separately on each
component of a wedge product. Then, we defile= Lo = 3 77¢;. Note that the co-
ordinatess; are now polynomials in the + 3 parametersy; and ;. Finally, as we
project onto/\2 C* by considering only the six Btker coordinates of the fort; with
1=(,j23, ...,k—1and-2<i<j<1

D= Y Mij2s.k-1¢Aej.

—2<i<j<i

Theorem 4.3. The point w € /\k C" lies in the Grassmann cone I'*" if and only if & lies in
I'2% for all values of the parameters. In other words, the decomposability of @ is equivalent
to

T_2-1701 — T-207-11+T-217-10=0,
viewed as an equation in the ring of polynomials in the variables a; andA;.

Proof. This is a consequence of the fact that wih=S, the image of the mapiz,4
satisfying the Ricker relation is equivalent to the HBDE and therefore satisfied if and only

if w € I'. Here, we consider the case that a peing /\ is selected such that the only
non-zero coordinates; are those withl € I, so that all infinite matrices can be reduced

to finite dimensional ones. We simplify matters by considetipgather tharr; where the
relationship between the two is given by the form@ila= 3~ «;S' = exp(>_ #;S"). Moreover,

as the duality map used explicitly in the earlier construction is not easily implemented
algebraically, we skip that step here and instead have to deal with a more complicated
change of coordinates map (constructed from the original using the classical formula for
inverse matrices) and coordinates which still sat{@ybut are permuted. [

5. Concluding remarks

We sought to determine what property of the shift mafiutilized in standard Sato
theory accounts for its ability to produce tau-functions from points in a Grassmannian. It
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turns out that it is the fact that dinfj{7_),] = 1. This fact can be written as a rank one
condition(15) on the block decomposition of the operator.

Rank one conditions of many different types have appeared in papers on integrable
systems. For instance, their role in finite dimensional integrable systems can be seen in
[5,11,16,26,27,35nd theirrole ininfinite dimensional integrable systems appearsin papers
such ad1,6,9,17,28,33]

In fact, [9] represented an attempt on our part to unify and generalize many of
these different forms into a single algebraic construction. The present paper fulfills the
promise made there to address the geometric implications. As we have shown, the sig-
nificance of this condition in the fornfl5) is its relationship to the existence of a
GCP linear map which translates thaiéter relations into difference equations for the
functionzs.
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